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Special points of (2 + 1)-reducible quasilattices in 
three dimensions 

Komajiro Niizeki 
Department of Physics, Tohoku University, Sendai 980, Japan 

Received 14 May 1990 

Abstract. We present a complete classification of special points of five-dimensional ( 5 ~ )  

Bravais lattices which yield with the cut-and-projection method (2  + 1)-reducible quasilat- 
tices in 3 ~ ;  the quasilattices are periodic along the c axis but quasiperiodic only along the 
plane perpendicular to it. There exist five Bravais classes of 5~ lattices associated with the 
(2 + 1)-reducible quasilattices, namely primitive octagonal, decagonal and dodecagonal 
lattices, the centred octagonal lattice and the pentagonal lattice. We discuss also the special 
points of the reciprocal lattices of these 5D lattices. 

1. Introduction 

A point in three-dimensional ( 3 ~ )  Euclidean space is called a special point of a lattice 
if its point symmetry with respect to the lattice has the centre of symmetry. In other 
words, a special point is an isolated point whose point symmetry is higher than those 
of neighbouring sites. The atoms in a crystal with a simple chemical formula occupy 
special points of a lattice. 

The special points of the reciprocal lattice of a periodic lattice are important in 
the band theory of solids because the dispersion relation of electron or phonon is 
stationary at these points and, moreover, the band degeneracy can occur at these points. 

The quasicrystal has a novel structure which has a 3~ positional long-range order 
but has a non-crystallographic point symmetry (Henley 1987). It cannot be periodic 
but quasiperiodic. The quasilattice (QL)  is a basic geometrical object which is useful 
in analysing the structure of a quasicrystal. A QL is usually obtained with the cut-and- 
projection method from a higher-dimensional periodic lattice (Janssen 1988). A QL 

has at most one point with a global point symmetry but an infinite number of points 
with local point symmetries. The centres of the local symmetries of a QL are the 
projections of the special points of the higher-dimensional lattice (Niizeki 1989c, d; 
to be referred to as I and 11, respectively). It has been shown that the special points 
in the reciprocal space of a QL are useful in understanding the reciprocal space 
properties of electronic wavefunctions in a quasicrystal (Niizeki and Akamatsu 1990). 

We have presented in I and I1 complete classifications of three Bravais classes of 
4~ lattices associated with octagonal, decagonal and dodecagonal QL in 2~ and the 
three Bravais classes of 6~ lattices associated with the 3~ icosahedral Q L ~ .  

Actual octagonal, decagonal and dodecagonal quasicrystals are obviously three- 
dimensional; they are periodic along the c axis but quasiperiodic only along the plane 

The special points of the 4D decagonal lattice and the 6D primitive icosahedral lattice are given also in 
Janssen (1988). 
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perpendicular to it (Janssen 1988). The point groups of these quasicrystals are Dmh 
with m = 8, 10 or 12, or their non-crystallographic subgroups. Dmh is represented as a 
direct product, Dmh = C,, x C,, where C,, acts on the plane (the 2D subspace) and 
C, = { E ,  uh}  on the axis (the I D  subspace). Accordingly, the 3~ quasilattices with 
these symmetries are called (2 + 1)-reducible. The (2 + 1)-reducible QL are obtained 
from (2 + 1)-reducible 5~ Bravais lattices with appropriate point symmetries (exactly 
speaking, the 5~ lattices are (2 + 2  + 1)-reducible). There exist five Bravais classes of 
(2 + 1)-reducible 5~ Bravais lattices, i.e. the primitive octagonal, decagonal and 
dodecagonal lattices, the centred octagonal lattice and the pentagonal lattice (Janssen 
1988, Gahler 1989). The object of the present paper is to present a complete classification 
of the special points of these lattices and their reciprocal lattices. 

In section 2, we will review the properties of m-gonal lattices in 4~ and 5~ (Janssen 
1988, Niizeki 1989a, b and Gahler 1989). Since the relationships between m-gonal 
lattices in 4~ (or SD) and their reciprocal lattices have not been presented systematically 
to date, we present them in section 3. We develop in section 4 a general theory of 
special points, most of which will be summaries of the theories presented in I and 11. 
The special points of the (2-t 1)-reducible Bravais lattices in 5~ are classified in section 
5. The content of this section is the main contribution of this paper. We investigate in 
section 6 the transformation among the special points of a 5~ lattice under its 
automorphism which is related to self-similarity of the QL derived from the 5~ lattice. 
In section 7 we discuss briefly the special points of the reciprocal lattices of the S D  

lattices. We also discuss the special points of (2+ 1)-reducible QL derived from the S D  

lattices. 

2. The (2 + 1)-reducible Bravais lattices in SD 

The point group of a ( 2 +  1)-reducible Bravais lattice in 5~ is isomorphic with that of 
a 3~ QL derived from the lattice and we shall identify the former with the latter. A 
(2+ 1)-reducible Bravais lattice in 5~ is a periodic stacking of 4~ m-gonal lattices with 
m = 8, 10 or 12 along the fifth axis. The fifth axis is called the c axis (or the z axis) 
because it turns to the c axis of the 3~ (2+ 1)-reducible QL derived from the SD lattice. 
We introduce the 4~ lattices before introducing the 5~ lattices. 

2.1. The octagonal, decagonal and dodecagonal lattices in 4~ 

The 4~ Euclidean space, E, ,  is divided into the parallel (or real) subspace Ell and the 
perpendicular (or internal) subspace E ,  as E, = E ,  0 E,; both of Ell and E ,  are 2~ 

Euclidean spaces. We shall identify a 2~ Euclidean space with the complex plane and 
a ZD vector with a complex number. Then, E4 = E,,@ E ,  is identified with the complex 
ZD space E,  = CO C = C2 and x E E, is represented as x = ( z , , ,  z,) E C 2 .  

The point group of the m-gonal lattice in 4~ is (2+2)-reducible and the first 
component of the reduction is equal to C,, (=D,), which acts on the parallel space 
(the second component CLL is isomorphic to the first, but this isomorphism is external, 
i.e. CLu # uC,,u-' V u  E C,,,,). The 4~ point group is identified with the ZD one. 

The basis vectors e, ,  i = 0-3, of the 4~ octagonal or dodecagonal lattice L, with 
m = 8 or 12 are given by 

e, = (a115'7 a , ( - O ' )  (1) 
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with 5 = exp(2ri /  m ) .  The m-gonal lattice is represented with respect to these basis 
vectors as 

i = O  

In the special case where all = a,,  L8 coincides with a 4~ simple hypercubic lattice 
L4,hc. A general octagonal lattice is an octagonal affine distortion of L4.h~; the affine 
transformation scales E , ,  and E ,  differently. Note that the lattice constant a, can be 
chosen arbitrarily because L ,  is to be projected along E - .  

We adopt in this paper an overcomplete but symmetrical basis system, e , ,  i = 0-4, 
for the decagonal lattice Llo,  where 

with 5 = exp(2ri/5).  Then, Ll0 is given by 

(4) I L l 0 =  1 n i e , / n i E Z  and O s n o + n l +  . . .+  n 4 s 4  . KO 
The volume of the unit cell of L,  is given by Cl, = /det(eoele2e3)l. It is written as 

Cl, = w , ( ~ ~ ~ a , ) ~ ,  where the numerical factor w, takes on the values 4, 5A/4 or 3 
according as m = 8, 10 or 12, respectively. 

The projection of L,  onto Ell is equal to a , , Z , ( ~ )  with J=exp(2 r i /m)  for m = 8 
and 12 or 5 = exp(2ri/5) for m = 10, where 

is an integral domain of biquadratic algebraic integers. Let J ‘=  -4‘ for m = 8 and 12 
or 5 ‘ =  t2 for m = 10. Then, J’ is an algebraic conjugate (not the complex conjugate) 
of 5 in Z,(J) and Z,(5) = Z,(L’).  Note that 5 m ’ 2 =  -1 for m = 8 and 12 but = 1 for 
m = 10. More precisely, P,( 5 )  = 0 with P,( x) = x4 + 1, Pl0( x)  = x4 + x3 + x’ + x + 1 and 

Let a = Z ,  k , J ‘ E  Z , ( 5 ) .  Then, a special 4~ affine transformation 6 is defined as 
follows: x = ( zll, z,) + 6x = (‘+zIi, U ’ Z ~ )  with U’ = Z, k , ( [ ’ ) ’  being the algebraic conjugate 
of U. 6 acts as a similarity transformation onto El, (or E,) with the ratio ( U (  (or ( ( ~ ’ 1 ) .  
L,  is transformed by 6 to its superlattice 6 L ,  (c L, ) ,  which is another m-gonal 
lattice (Niizeki 1989b). Then, the volume of the unit cell is multiplied by det 6 = / u u ’ ) ~  = 
N ( a ) ,  which takes a positive integer value. 6 is an automorphism of L, if N ( u )  = 1 
(i.e. (T is a unit of Z,(J)) .  6 is an orthogonal transformation in 4~ if \U \=  (U’(  = 1. The 
a c t i p  of 6 on L, is isomorphic to the action of (T on Z , ( 5 ) .  Note that 6 = Z, k , ( i ) ’  E 

The 4~ m-fold rotation in the point group C,, of L, is given by C,= for m = 8 
and 12 or Clo = ij with 77 = -13 = exp( ~ i / 5 ) .  Accordingly, C5 = ( Cl,,)* = 5. On the other 
hand, the 4~ mirror U, in C,, is represented by the complex conjugate operation on 
E4= C2. The action of U” on L, is isomorphic to that of the complex conjugate 
operation on 2, ( 5 ) .  

There exists a 4~ unimodular matrix R ,  such that f (eoe,e2e3)  = (eoe,e2e,)R,.  It 
satisfies P,(R,) = O .  R8 is anticyclic because t e ,  = e, , ,  with e4= -eo.  If U = 8 ,  k, [ ’  E 
Z,, , ( l ) ,  then 6(eoe le2e3)  = (eoe ,e2e , )K with K = X I  k , (R , ) ’  E ZJRT) and det B = det K .  
The commutable ring Z ( R , )  is isomorphic to Z,, , ( l )  and Z(5) ;  5 and R ,  are related 
by a similarity transformation with the 4 x  4 matrix ( eoe le2e3) .  

P, , (x)=x4-x2+1* 

z(5) ( Z Z m ( 5 ) ) .  
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Lg is divided into two sublattices LL0’ and Ly’  (= e, + LL’)) by the parity of the sum 
of the indices of the lattice vectors. Lko’ is a face-centred type sublattice of Lg but 
belongs to a primitive octagonal Bravais class (Niizeki 1989b) because L r ’ =  6L ,  with 
U =  1+5=2cos(.rr/8) exp(i.rr/8), r‘= 1-{=2sin(.rr/8)exp(-3i.rr/S) and det 6.2. 
Note that &ei = ei + Incidentally, a body-centred sublattice of Lg belongs also to 
a primitive octagonal Bravais class because 

on account of 2/u = 1 - 5 + l2  - 5’. 
L, ,  is divided naturally into five sublattices L(IpO’, p = 0-4, where each sublattice is 

composed of the lattice vectors whose indices sum to p .  The five sublattices are translated 
to each other; L(I$) = pe,+ L‘,:), p = 1-4. Lit) is another 4~ decagonal Bravais lattice 
(Niizeki 1989b), which is written as 6Llo with U = l2  - 5’ = 2i sin( ~ / 5 ) ,  U ’  = l4 - 5 = 
-2i s i n ( 2 ~ / 5 )  and det 3 = 5. Basis vectors of Lit’ are given by $ei (= ei+2 - ei+3) ,  i = 0-4, 
so that the axes of L‘,:’ are rotated by r / 2  (or -.rr/2) in Ell (or E,) from those of Llo.  
The relation between L,, and L\:’ is similar to that between the 2~ triangular lattice 
and one of its three sublattices into which it is divided. 

2.2. (2+ 1)-reducible Bravais lattices in 5~ 

A primitive m-gonal Bravais lattice in 5~ with m = 8, 10 or 12 is defined by the direct 
product of the 4~ m-gonal lattice L, and the I D  lattice L1 = { nc I n E 2); I!,,,~ = L, X Ll = 
( (1 ,  nc)  11 E L, and n E Z } .  The point group of L,,, is given by Dmh = C,, x C, = 
D, + ID, with I being the 5~ inversion. Basis vectors E ,  of Lm,l are given by E ,  = (e,, O), 
i = O , l ,  . . . ,  k-1, and e k = ( O , c )  with k = 4  for m = 8  and 12 but k = 5  for m = 1 0 .  
Accordingly, a lattice vector 1 = Z, n,E, is indexed as 1 = [ nonl  . . . nJ. Note that Lg,1 is 
an octagonal affine distortion of the 5~ simple hypercubic lattice, LS,hc .  

The centred octagonal lattice in 5 ~ ,  Lg,&, is given as one of the two face-centred 
sublattices of the primitive octagonal lattice Lg.1 and is represented with the basis 
vectors of L8,c as 

(6) I L8,c= 1 n , s , / n , E Z a n d  n , + n , +  . . .+  n,=even . KO 
The point group of L8.c is D g h .  The volume of the unit cell of L g , c  is twice that of 
Lg,c is an alternating stacking of two 4~ octagonal lattices t io ’  and L:”. The relation 
between L8,, and L g , c  is similar to that between the primitive and the face-centred 
tetragonal lattices in 3 ~ .  

The pentagonal lattice L, is a non-primitive (2+ 1)-reducible lattice, which is one 
of the five equivalent sublattices into which Ll0,, is divided. Its basis vectors d,, i = 0-4, 
are related to those of Ll0,, by E‘, = e ,  + eS = (e,, c). The point group of L,  is Dsd = 
Ds+ I D s c  D I O h .  The remaining four sublattices are given by P E ~ +  L s ,  p = 1-4. 

If al l  = a, = f i c ,  we obtain E“, gJ = 5c26,,,, so that L,  coincides in this case with 
L5,hc. Therefore, a general pentagonal lattice is a pentagonal affine distortion of L 5 . h ~ .  

Ls is a periodic stacking along the c axis of 4~ decagonal lattices LIpO), which are 
sublattices of L , , .  If these five 4~ lattices are denoted by A, B, C, D and E, respectively, 
the one period of the stacking is given by ABCDE. Consequently, Ls degenerates into 
L , ,  if it is projected along the c axis. The relation between Ls and L,, , ,  is very similar 
to that between the rhombohedral lattice and the hexagonal lattice in 3 ~ .  
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There are no non-primitive dodecagonal lattices in 5 ~ .  

3. The reciprocal lattices 

Let L = ( 2 ,  n,e, 1 n, E Z }  be a d-dimensional Bravais lattice with point group G .  Then, 
the reciprocal lattice L* of L is the set of all the vectors g satisfying the condition, 
g . 1 E Z V I  E L. It follows that L* is a Bravais lattice whose point group is G .  A necessary 
and sufficient condition for e: to be basis vectors of L* is that the d x d matrix (e, ef) 
is a unimodular matrix. ef are called dual basis vectors to e, if they satisfy the conditions 
e, + e: = a,,,. The dual basis vectors are, however, not always convenient because they 
may not explicitly conform to the symmetry of L*. In this paper, we shall use 
symmetry-adopted basis vectors. Note that volumes R and R* of the unit cells of L 
and L*, respectively, are related by RR* = 1. 

A reciprocal lattice vector g = Z ,  n,eTE L* is indexed with parentheses as g =  

It follows from the general argument that the reciprocal lattices of the octagonal, 
decagonal, dodecagonal and pentagonal lattices in 4~ or SD are 4~ or SD lattices with 
the same point symmetries. 

(non, . . * nk). 

3.1. The case of 4D lattices 

The basis vectors e: of the reciprocal 4~ octagonal lattice Lz and the dodecagonal 
one LT, are given by similar equations to equations (1) but the lattice constants are 
replaced by a i  = 1 / ( 2 q )  and a? = 1/(2a,) for L$ and a$ = l/(dq) and a?= 
-l/(&al) (<O) for LT2. The numerical factors in these relations of the lattice constants 
are consistent with the relation R,n*, = 1.  ef are dual to e, for the octagonal case. 

It is well known that the axes of the reciprocal triangular lattice in ZD are rotated 
by ~ / 2  from those of the one in the real space. A similar relation exists between Llo  
and its reciprocal lattice LT,; LTo is given by L'$ (not by L, , )  but with the lattice 
constants being replaced by a $  = 2/(5al , )  and ay = 2/(5a,). That is, the basis vectors 
of LTo are given by ef = ( a $ u l ' ,  afu' l ' ' )  with U = l2  - 13. 

The matrices (e, ef) for the decagonal and the dodecagonal cases are presented 
in appendix 1. 

3.2. The case of 5 0  lattices 

The reciprocal lattice of the primitive lattice L,,, = L ,  x L ,  is also a primitive m-gonal 
lattice because LE,, = LE x LT, where LT = {nc* I n E Z }  with c* = l / c .  The basis vectors 
of L:,, are given by ~ f = ( e ? , O ) ,  i = O ,  1 , . . . ,  k-1, and ~ f = ( O , c * ) .  

The centred octagonal Bravais lattice L8,= is a face-centred sublattice of L8,,  so that 
its reciprocal lattice L& is the body-centred lattice L$ U {( 11 11 1)/2 + L$} ,  i.e. 

L& = { ~ ( n o n , n , n , n , )  1 n, E Z and n, n, mod 2) ( 7 )  
where the index scheme for L:,, is used. 

It is shown easily that L& can be indexed, alternatively, as a face-centred octagonal 
lattice if the basis vectors = ( ($)- 'ef ,  0), i = 0-3, and E1: = (0, c/2) are used, where 
U = 1 + l. This means that a body-centred octagonal lattice in SD and the face-centred 
lattice belong to the same Bravais class but, however, Zf  are rotated from E : .  This is 
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similar to the fact that the face-centred tetragonal lattice in 3~ can be indexed as a 
body-centred lattice if the basis vectors are changed. However, the index scheme with 
e:  is superior to that with E: because &fI l  are parallel to e , ~ .  

The reciprocal lattice of L5 is also a pentagonal Bravais lattice LT whose lattice 
constants are related to those of L5 by a;f = 2 / ( 5 a i l ) ,  a: = 2/(5a,) and c* = 1/ (5c) .  The 
basis vectors of LT are dual to those of L , .  

4. A general theory of the special points 

A point group is called a centring group if the origin is its only fixed point. A group 
is a centring group if it includes I, the inversion operator. A point x in Ed is called a 
special point of a lattice L c Ed if its point group G(x) with respect to the space group 
% = { { p l l } / p ~ G  and I E  L }  is a centring subgroup of G. Two special points are 
equivalent if they are transformed to each other by 3. A set of equivalent special points 
(mathematically, an orbit) form a class of special points. We can choose a representative 
xo in a unit cell from each class. The number of special points of a class in the unit 
cell is given by r = IGl/lG(xo)l where 1 . 1  stands for the order of the group. r is called 
the order of the class. 

We assume hereafter that L is a Bravais lattice. Then, G includes I .  A subgroup 
of G is classified into type-I or type-I1 according as it includes I or not, respectively, 
and, correspondingly, a special point of L is classified similarly. A necessary and 
sufficient condition for a point to be a type-I special point is that it is a lattice vector 
of the 'half lattice', L'H'= {1/211 E L} .  Accordingly, the sum of the order over all the 
classes of type-I special points of L is equal to 2d. The problem remaining for the 
type-I special points is to determine their point groups. The lattice points of L form 
one class of type-I special points with the full symmetry. This class is denoted by r 
following the convention in the band theory. We shall call a Bravais lattice a type-I 
lattice if it has no type-I1 special points but a type-I1 lattice, otherwise. 

Ed is divided into fundamental domains which are translationally equivalent. A 
representative of the domains is the one, V, which includes the origin 0 E L. We assume 
that V (exactly, its closure) is a symmetrical convex polytope which is invariant against 
G. For example, the fundamental domain derived from the Voronoi partitioning with 
respect to L has this property. Then, all the special points in V except r at the origin 
are located on the centres of k-dimensional surfaces of V with 0 s k s d - 1. We take 
the symmetrical fundamental domains to be unit cells of L. The parallelotope formed 
by the basis vectors is not usually symmetrical. 

The Voronoi cell at the origin of a simple hypercubic lattice Ld,hc is a hypercube. 
Therefore, its special point is indexed as [hohl  . . . h d - , ]  in which hi can take 0, i or 
-i. Consequently, all the special points are type I and Ld.hc is a type-I lattice. The 
simplest case is the ID lattice L1 = { nc 1 n E Z } ,  which has two classes of special points 
with the full symmetry C,; the representatives are 0 and c/2. 

Assume that L is an affine distortion of Ld,hc ,  whose point symmetry is higher than 
that of L. Then, all the special points of L are derived from those of Ld,hc and, 
consequently, L as well as Ld,hc  is a type-I lattice. However, two equivalent special 
points of Ld,hc are not necessarily equivalent as special points of L. Note that the 
parallelotope formed by the basis vectors of L is a symmetrical unit cell but is not a 
Voronoi cell. 

Assume that Lis a direct product of lower-dimensional lattices L ' c  Ed,  and L " c  E d , , ,  
L = L' x L" (=  {( f ' ,  1") I 1' E L', I"E L"} and that G is also a direct product, G = G' x G" 
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with G’ and G” being the point groups of L’ and L”. Then, it can be shown easily that 
a necessary and sufficient condition for x = (x’, x”) E E D  = E d , @  Ed,. to be a special point 
of L is that x’ and x” are special points of L’ and L”, respectively. Then G(x)=  
G‘(x’) x G”(x”). L is a type-I lattice only if L’ and L” are type-I lattices. Note that the 
fundamental domain of L is a direct product of those of L’ and L”; V = V’ x V ’  = 

( ( X ’ , X ’ ’ ) I X ’ E  V ‘ , X ” E  V } .  The boundary of V is given by aV=aV‘x  V”+ V’xaV”.  
The simplest case of the above theorem is where d ‘  = d - 1 and d ”  = 1, i.e. L”= L ,  . 

Then, V =  V ,  = [-c/2, c /2 ]  and V = V ‘ X  V ,  is a hyperprism whose base hypersurface 
is V’. A special point of L is given by x = (x’, 0) or (x’, c/2) with x’ being a special 
point of L’. In the former case, x (except the case x=O) is located on the boundary 
of V’ x {0}, which is the horizontal cross section of V through the origin, and, in the 
latter case, x is on the top hypersurface of V. The point group of a special point x is 
given by G(x)  = G(x‘) x C,. 

Assume that L is a sublattice of a type-I lattice i as is in the case of L 8 . c .  Then, 
’3 is a subgroup of the space group of i. Consequently, all the special points of L are 
simultaneously special points of i, so that the former are searched by examining the 
latter, which are known already. The point group of a special point of L is a subgroup 
of that of L‘. Moreover, two equivalent special points of L‘ are not necessarily equivalent 
as special points of L. 

Before closing this section, we add a remark. If x is a type-I1 special point, Zx is 
an equivalent special point to x but is not translationally equivalent to x. 

5. The special points of the SD Bravais lattices 

The special points of 4~ lattices L, with m = 8, 10 and 12 have been listed in I. 
Therefore, the special points of the primitive m-gonal lattices in 5~ are easily enumer- 
ated because the 5~ lattices are direct products of L, and L , .  The results are listed 
in table 1. The special point of the type x = (x‘, O),  where x‘ is a special point of L,, 
is represented by the same symbol as that used in I for x’ (note, however, that the 
symbol C’ in I is replaced by M in this paper). On the other hand, the special point 
of the type x = (x’, c/2) is represented in most cases by the second alphabet to that of 
the symbol for (x’, 0). Since the present index scheme for Llo is different from that in 
I, the indices of the special points of Ll0,,  are transformed appropriately from those 
presented in I?. In the case of different special points with a same number of 
zero indices are derived from a single class of special points of LS,hc.  

The type-I special points of the centred octagonal lattice L 8 , c  are classified as in 
table 2. The representative of each class is indexed as $[n0n,n2n3n4]  with O S  n, s 1 and 
X i  n, =even. Since the unit cell of L8.c is twice that of LE,,, two classes of special points 
of L8.c may become a single class of special points of given in table 1. A special 
point of L8,c is denoted by the same symbol as that of L8.1 if indices are common. 

The remaining task for L8.c is to enumerate its type-I1 special points. There exist 
seven type-I1 centring subgroups of DE,,:  D 2 ,  D4 ,  D E ,  S4, S 8 ,  DZd and D4d. None of 
them includes a h .  Special points of L8,c are derived from those of L8.l and we can 
assume that a representative of a class of type-I1 special points takes the form: 
x = 4[n0n1n2n3n4] with O S  n, S 1 and X i  ni = odd; if x cannot be reduced to this form 
by a translation in LE,$, -x  (= Ix) can be. If n4 = 0, then, u h  E G(x). Therefore, X and 

+ The bars on some indices of special point P’  were missed in I .  
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R in table l ( a )  cannot be special points of Ls,c. Z (=  ~ [ O O O O l ] )  is also excluded because 
its point group is Csc .  

There remain only three candidates for type-I1 special points of L8,c,  namely, 0, 
N and P in table l (a ) .  Of the three, D is excluded because its point group is CZU. 
The point group of N (or P )  includes S,  = C,U,, (or s8 = CgUh), so that N (or P )  is 
a type-I1 special point. The point groups of N and P are DZd and D4d, respectively, 
as given in table 2. 

The pentagonal lattice L5 is a type-I lattice and the point groups of the special 
points are determined as presented in table 3.  Note that C and M (or 0 and P )  would 
be equivalent if Ls were LS,hc. Table 3 has a mirror symmetry with respect to the 
interchange of indices, 0-f ,  which follows from self-duality of L s .  

Table 3. A classification of special points of the pentagonal lattice in 5D. 

r X C M 0 P D I 

D 5 d  c2 ii c2 h c2 /I C? h CZ h c2 h D5d 

1 5 5 5 5 5 5 1 
I I I I I  
i i i I I  O"?! 

2 2 2 2  
'01'0 00000 ~0000 0$oo$ 004 io ; $004 2 2 2  

6. Transformation among the special points 

An m-gonal QL in ZD has self-similarity characterized by a complex number I,, which 
is a unit of Z , ( { ) ;  on the inflation the QL is scaled by I T , (  and, subsequently, rotated 
by arg~, , , .  I, is given by 1+5+5- '  ( = l + d ) ,  - { 2 - 4 ' - 2  (=+( l+&))  and 1 + 5  for 
m = 8, 10 and 12, respectively (Niizeki 1989a). 

The affine transformation ?, is an automorphism of L, and satisfies ?,,,CmUGii = Cmo. 
Therefore, there exists a unimodular matrix K ,  such that ?,(eoele2e3) = (eoeie2e3) K , .  
Then, the indices of a special point are transformed by K ,  on the inflation procedure. 
It follows that (i)  all the classes of the special points of L,  can be grouped into 
multiplets, (ii) different members of a single multiplet are permuted cyclically by the 
inflation and (iii) the point group is common among the members of the multiplet. r 
always forms a singlet. A class must form a singlet if there are no classes (other than 
r) with the same point symmetry as that of the class. 

The above results are discussed in I. We consider here a similar question in the 
case of ( 2 +  1)-reducible Bravais lattices in SD. Since (2+ 1)-reducible QL associated 
with these SD lattices are periodic along the c axis, the present automorphism a must 
be (4+1)-reducible; a =b .O( l ) ,  where b (uEZ({)) is an automorphism of the 4~ 

hyperlayers perpendicular to the c axis. A SD unimodular matrix K is associated with 
a. We can take U = I, for the case of Lm,l because Lm.i = L,  x L1 . This choice also 
works well for L8,c, as proved in appendix 2.1. However, this choice is wrong for L5 
and we have to choose cr = - ( T ~ ~ ) ~  as shown in appendix 2.2. This automorphism of 
L5 was found by Gahler (1986) in connection with self-similarity of a decagonal QL 
in ZD. Note that the unimodular matrix K associated with a can be treated in modulo 
2 when the indices of a type-I special point x of L ,  are transformed because 2x= 
0 mod L,. 
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Grouping the special points of Lm,l into multiplets is performed straightforwardly 
because the multiplets are derived from those of 15,; the latter multiplets are listed in 
I. It can be shown easily that L8,= has two doublets { C, C'} and { W, S} but other classes 
are singlets, The presence of a doublet is due to the fact that the relevant unimodular 
matrix K satisfies K 2  = E mod 2 with E being the unit matrix. On the other hand, L5 
has two triplets { X ,  P, 0 )  and {D, C, M }  but r and I are singlets. The triplets are 
allowed because K' = E mod 2. 

7. Discussion 

We have shown in section 3 that the reciprocal lattice of a (2+1)-reducible Bravais 
lattice in 5~ is also a (2  + 1)-reducible Bravais lattice with the same point symmetry. 
Therefore, the results of the preceding section apply equally to the classification of 
the special points in the reciprocal space of the ( 2  + 1)-reducible Bravais lattices. The 
only task remaining is to reindex the special points of the centred octagonal lattice as 
a body-centred lattice. The transformation matrix which transforms the indices from 
the face-centred lattice to the body-centred one is given by 

1 1 - 1  1 0  
-1 1 1 -1 0 (i -: -: i j. 

The indices as a body-centred lattice are listed in the fifth row of table 2. 
= Q, x L ,  with Q, 

being a 2~ QL derived from L,. An m-gonal quasiperiodic tiling (QPT) in 2~ is associated 
with Q, and, accordingly, Om,, yields a 3~ (2+ 1)-reducible QPT composed of prisms, 
each of which is given by T x S with T being a tile in the 2~ QPT and S = [ nc, ( n  + l )c ]  
being a segment of L1 . The vertices, the edge centres, the surface centres and the body 
centres of the prisms are special points of The base centre and the body centre 
of a symmetrical prism (e.g., the case of the octagonal prism of Q8.1) formed of several 
basic prisms are also special points. 

is given, alternatively, as a 
sublattice of Q 8 . l .  It is an alternating stacking of two 2~ octagonal QL derived from 
L g )  and L;').  The special points of Q 8 , c  are obtained from those of ( & I .  

The pentagonal lattice L ,  is an affine distortion of L5,hc. Therefore, the pentagonal 
QL, Qs, obtained from L, yields naturally a 3~ pentagonal QPT with parallelepipeds 
(Luck 1987). The vertices, the edge centres, the face centres and the body centres of 
the parallelepipeds are special points of Q5.  More precisely, the special points of type 
0 and P are located on the body centres of the two kinds of parallelepipeds of the 
QFT; 0 (or P) becomes an oblate (or prolate) rhombohedron when al l=2c. A 
parallelepiped of type P (or 0) has four (or two) faces of type C and two (or four) 
faces of type M. Four (or ten) parallelepipeds may form a dodecahedron (or an 
icosahedron), which is an affine distortion of a rhombic dodecahedron (or icosahedron) 
in the primitive icosahedral QL in 3 ~ .  The centre of the dodecahedron (or icosahedron) 
is a special point of type D (or I ) .  These polyhedra (as well as the two parallelepipeds) 
are so-called zonohedra, which are projections of a 5~ hypercube and a 4~ hypercube 
which is one of the hypersurfaces of the former (Coxeter 1973). 

A (2+ 1)-reducible QL derived from L,,, takes the form 

The centred octagonal QL, Q8,&, obtained from 
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Appendix 1 

The matrices (ei * e:) are given by the left-hand matrix below for the decagonal case 
and by the right-hand matrix below for the dodecagonal case: 

0 1 0 0  0 1 - 1  0 0 1: ; -; -;I [A ; Ij. 
0 0 1 0  

1 - 1  0 0 0 

Appendix 2 

2.1. 

The 5~ unimodular matrix associated with a = 663 (1) is K = K g @  ( l ) ,  which is given 
by the left-hand matrix below: 

1 1  0 - 1  0 i, b i y j )  
0 0 0 0 1  

- 1 0 1 1 0  1 1 -! -; -1 A 
0 1  0 -1 

The parity of the sum of the indices of I E  
Zi  k, = 1 mod 2 .  Therefore, a is an automorphism of L8,c. 

is not changed by K = (k,) because 

2.2. 

transforms LIpO) into Liz) with q zz - 2 p  mod 5 (Niizeki 1989b). Therefore, it changes 
the stacking ABCDE of L5 into ADBEC, which cannot be transformed to ABCDE 
by a rotation around the c axis. Thus, a = ~ l o O  (1) is not an automorphism of L5. On 
the other hand, (-7*:o)L%)= LlpO’because - ( -2)2= 1 mod 5 .  It follows that a = (-ifo)@ 
(1) is an automorphism of L5. The 5~ unimodular matrix K associated with a is given 
by the right-hand matrix above. 
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