Special points of (2+1)-reducible quasilattices in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 234569
(http://iopscience.iop.org/0305-4470/23/20/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:22

Please note that terms and conditions apply.

Special points of (2+1)-reducible quasilattices in three dimensions

Komajiro Niizeki
Department of Physics, Tohoku University, Sendai 980, Japan

Received 14 May 1990

Abstract

We present a complete classification of special points of five-dimensional (SD) Bravais lattices which yield with the cut-and-projection method ($2+1$)-reducible quasilattices in 3 D ; the quasilattices are periodic along the c axis but quasiperiodic only along the plane perpendicular to it . There exist five Bravais classes of 5 D lattices associated with the $(2+1)$-reducible quasilattices, namely primitive octagonal, decagonal and dodecagonal lattices, the centred octagonal lattice and the pentagonal lattice. We discuss also the special points of the reciprocal lattices of these 5 D lattices.

1. Introduction

A point in three-dimensional (3D) Euclidean space is called a special point of a lattice if its point symmetry with respect to the lattice has the centre of symmetry. In other words, a special point is an isolated point whose point symmetry is higher than those of neighbouring sites. The atoms in a crystal with a simple chemical formula occupy special points of a lattice.

The special points of the reciprocal lattice of a periodic lattice are important in the band theory of solids because the dispersion relation of electron or phonon is stationary at these points and, moreover, the band degeneracy can occur at these points.

The quasicrystal has a novel structure which has a 3D positional long-range order but has a non-crystallographic point symmetry (Henley 1987). It cannot be periodic but quasiperiodic. The quasilattice (QL) is a basic geometrical object which is useful in analysing the structure of a quasicrystal. A qL is usually obtained with the cut-andprojection method from a higher-dimensional periodic lattice (Janssen 1988). A qL has at most one point with a global point symmetry but an infinite number of points with local point symmetries. The centres of the local symmetries of a QL are the projections of the special points of the higher-dimensional lattice (Niizeki 1989c, d; to be referred to as I and II, respectively). It has been shown that the special points in the reciprocal space of a QL are useful in understanding the reciprocal space properties of electronic wavefunctions in a quasicrystal (Niizeki and Akamatsu 1990).

We have presented in I and II complete classifications of three Bravais classes of 4D lattices associated with octagonal, decagonal and dodecagonal QL in 2D and the three Bravais classes of 6 D lattices associated with the 3D icosahedral QL^{\dagger}.

Actual octagonal, decagonal and dodecagonal quasicrystals are obviously threedimensional; they are periodic along the c axis but quasiperiodic only along the plane
\dagger The special points of the 4 D decagonal lattice and the 6 D primitive icosahedral lattice are given also in Janssen (1988).
perpendicular to it (Janssen 1988). The point groups of these quasicrystals are $D_{m h}$ with $m=8,10$ or 12 , or their non-crystallographic subgroups. $D_{m h}$ is represented as a direct product, $D_{m h}=C_{m v} \times C_{5}$, where $C_{m v}$ acts on the plane (the 2D subspace) and $C_{s}=\left\{E, \sigma_{h}\right\}$ on the axis (the 1D subspace). Accordingly, the 3D quasilattices with these symmetries are called $(2+1)$-reducible. The $(2+1)$-reducible QL are obtained from ($2+1$)-reducible 5D Bravais lattices with appropriate point symmetries (exactly speaking, the 5 D lattices are $(2+2+1)$-reducible). There exist five Bravais classes of ($2+1$)-reducible 5D Bravais lattices, i.e. the primitive octagonal, decagonal and dodecagonal lattices, the centred octagonal lattice and the pentagonal lattice (Janssen 1988, Gähler 1989). The object of the present paper is to present a complete classification of the special points of these lattices and their reciprocal lattices.

In section 2, we will review the properties of m-gonal lattices in 4D and 5D (Janssen 1988, Niizeki 1989a, b and Gähler 1989). Since the relationships between m-gonal lattices in 4D (or 5D) and their reciprocal lattices have not been presented systematically to date, we present them in section 3 . We develop in section 4 a general theory of special points, most of which will be summaries of the theories presented in I and II. The special points of the $(2+1)$-reducible Bravais lattices in 5D are classified in section 5. The content of this section is the main contribution of this paper. We investigate in section 6 the transformation among the special points of a 5 D lattice under its automorphism which is related to self-similarity of the QL derived from the 5D lattice. In section 7 we discuss briefly the special points of the reciprocal lattices of the 5D lattices. We also discuss the special points of $(2+1)$-reducible QL derived from the 5D lattices.

2. The $(2+1)$-reducible Bravais lattices in 5 D

The point group of a $(2+1)$-reducible Bravais lattice in 5D is isomorphic with that of a 3D QL derived from the lattice and we shall identify the former with the latter. A $(2+1)$-reducible Bravais lattice in 5D is a periodic stacking of 4D m-gonal lattices with $m=8,10$ or 12 along the fifth axis. The fifth axis is called the c axis (or the z axis) because it turns to the c axis of the 3D $(2+1)$-reducible QL derived from the 5D lattice. We introduce the 4 D lattices before introducing the 5D lattices.

2.1. The octagonal, decagonal and dodecagonal lattices in $4 D$

The 4D Euclidean space, E_{4}, is divided into the parallel (or real) subspace $E_{\|}$and the perpendicular (or internal) subspace E_{\perp} as $E_{4}=E_{\|} \oplus E_{\perp}$; both of $E_{\|}$and E_{\perp} are 2D Euclidean spaces. We shall identify a 2D Euclidean space with the complex plane and a 2D vector with a complex number. Then, $E_{4}=E_{1} \oplus E_{\perp}$ is identified with the complex 2 D space $E_{4} \simeq \boldsymbol{C} \oplus \boldsymbol{C} \equiv \boldsymbol{C}^{2}$ and $\boldsymbol{x} \in E_{4}$ is represented as $\boldsymbol{x}=\left(z_{i}, z_{\perp}\right) \in \boldsymbol{C}^{2}$.

The point group of the m-gonal lattice in 4 D is ($2+2$)-reducible and the first component of the reduction is equal to $C_{m v}\left(\simeq D_{m}\right)$, which acts on the parallel space (the second component $C_{m v}^{\prime}$ is isomorphic to the first, but this isomorphism is external, i.e. $C_{m v}^{\prime} \neq \sigma C_{m v} \sigma^{-1} \forall \sigma \in C_{m v}$). The 4D point group is identified with the 2D one.

The basis vectors $e_{i}, i=0-3$, of the 4 D octagonal or dodecagonal lattice L_{m} with $m=8$ or 12 are given by

$$
\begin{equation*}
e_{\mathbf{t}}=\left(a_{\|} \zeta^{i}, a_{-}(-\zeta)^{i}\right) \tag{1}
\end{equation*}
$$

with $\zeta=\exp (2 \pi \mathrm{i} / m)$. The m-gonal lattice is represented with respect to these basis vectors as

$$
\begin{equation*}
L_{m}=\left\{\sum_{i=0}^{3} n_{i} \boldsymbol{e}_{i} \mid n_{i} \in \boldsymbol{Z}\right\} . \tag{2}
\end{equation*}
$$

In the special case where $a_{\|}=a_{\perp}, L_{8}$ coincides with a 4D simple hypercubic lattice $L_{4, \mathrm{hc}}$. A general octagonal lattice is an octagonal affine distortion of $L_{4, \mathrm{hc}}$; the affine transformation scales $E_{\|}$and E_{\perp} differently. Note that the lattice constant a_{\perp} can be chosen arbitrarily because L_{m} is to be projected along E_{\perp}.

We adopt in this paper an overcomplete but symmetrical basis system, $\boldsymbol{e}_{i}, i=0-4$, for the decagonal lattice L_{10}, where

$$
\begin{equation*}
\boldsymbol{e}_{i}=\left(a_{\|} \zeta^{i}, a_{+} \zeta^{2 i}\right) \tag{3}
\end{equation*}
$$

with $\zeta=\exp (2 \pi \mathrm{i} / 5)$. Then, L_{10} is given by

$$
\begin{equation*}
L_{10}=\left\{\sum_{i=0}^{4} n_{i} \boldsymbol{e}_{i} \mid n_{i} \in Z \text { and } 0 \leqslant n_{0}+n_{1}+\ldots+n_{4} \leqslant 4\right\} . \tag{4}
\end{equation*}
$$

The volume of the unit cell of L_{m} is given by $\Omega_{m}=\left|\operatorname{det}\left(e_{0} e_{1} e_{2} e_{3}\right)\right|$. It is written as $\Omega_{m}=\omega_{m}\left(a_{\|} a_{\perp}\right)^{2}$, where the numerical factor ω_{m} takes on the values $4,5 \sqrt{5} / 4$ or 3 according as $m=8,10$ or 12 , respectively.

The projection of L_{m} onto $E_{\|}$is equal to $a_{\|} \boldsymbol{Z}_{m}(\zeta)$ with $\zeta=\exp (2 \pi \mathrm{i} / m)$ for $m=8$ and 12 or $\zeta=\exp (2 \pi \mathrm{i} / 5)$ for $m=10$, where

$$
\begin{equation*}
Z_{m}(\zeta)=\left\{\sum_{i=0}^{4} n_{i} \zeta^{i} \mid n_{i} \in \boldsymbol{Z}\right\} \tag{5}
\end{equation*}
$$

is an integral domain of biquadratic algebraic integers. Let $\zeta^{\prime}=-\zeta$ for $m=8$ and 12 or $\zeta^{\prime}=\zeta^{2}$ for $m=10$. Then, ζ^{\prime} is an algebraic conjugate (not the complex conjugate) of ζ in $\boldsymbol{Z}_{m}(\zeta)$ and $\boldsymbol{Z}_{m}(\zeta)=\boldsymbol{Z}_{m}\left(\zeta^{\prime}\right)$. Note that $\zeta^{m / 2}=-1$ for $m=8$ and 12 but $=1$ for $m=10$. More precisely, $P_{m}(\zeta)=0$ with $P_{8}(x)=x^{4}+1, P_{10}(x)=x^{4}+x^{3}+x^{2}+x+1$ and $P_{12}(x)=x^{4}-x^{2}+1$.

Let $\sigma=\Sigma_{i} k_{i} \zeta^{i} \in \boldsymbol{Z}_{m}(\zeta)$. Then, a special 4D affine transformation $\hat{\sigma}$ is defined as follows: $\boldsymbol{x}=\left(z_{\|}, z_{\perp}\right) \rightarrow \hat{\sigma} \boldsymbol{x}=\left(\sigma z_{\|}, \sigma^{\prime} z_{\perp}\right)$ with $\sigma^{\prime}=\Sigma_{i} k_{i}\left(\zeta^{\prime}\right)^{i}$ being the algebraic conjugate of σ. $\hat{\sigma}$ acts as a similarity transformation onto $E_{\|}$(or E_{\perp}) with the ratio $|\sigma|$ (or $\left|\sigma^{\prime}\right|$). L_{m} is transformed by $\hat{\sigma}$ to its superlattice $\hat{\sigma} L_{m}\left(\subset L_{m}\right)$, which is another m-gonal lattice (Niizeki 1989b). Then, the volume of the unit cell is multiplied by $\operatorname{det} \hat{\sigma}=\left|\sigma \sigma^{\prime}\right|^{2} \equiv$ $N(\sigma)$, which takes a positive integer value. $\hat{\sigma}$ is an automorphism of L_{m} if $N(\sigma)=1$ (i.e. σ is a unit of $Z_{m}(\zeta)$). $\hat{\sigma}$ is an orthogonal transformation in 4 D if $|\sigma|=\left|\sigma^{\prime}\right|=1$. The action of $\hat{\sigma}$ on L_{m} is isomorphic to the action of σ on $Z_{m}(\zeta)$. Note that $\hat{\sigma}=\Sigma_{i} k_{i}(\hat{\zeta})^{i} \in$ $\boldsymbol{Z}(\hat{\zeta})\left(\simeq \boldsymbol{Z}_{m}(\zeta)\right)$.

The $4 \mathrm{D} m$-fold rotation in the point group $C_{m v}$ of L_{m} is given by $C_{m}=\hat{\zeta}$ for $m=8$ and 12 or $C_{10}=\hat{\eta}$ with $\eta=-\zeta^{3}=\exp (\pi \mathrm{i} / 5)$. Accordingly, $C_{5}=\left(C_{10}\right)^{2}=\hat{\zeta}$. On the other hand, the 4D mirror σ_{v} in $C_{m v}$ is represented by the complex conjugate operation on $E_{4} \simeq C^{2}$. The action of σ_{v} on L_{m} is isomorphic to that of the complex conjugate operation on $\boldsymbol{Z}_{m}(\zeta)$.

There exists a 4D unimodular matrix R_{m} such that $\hat{\zeta}\left(e_{0} e_{1} e_{2} e_{3}\right)=\left(e_{0} e_{1} e_{2} e_{3}\right) R_{m}$. It satisfies $P_{m}\left(R_{m}\right)=0 . R_{8}$ is anticyclic because $\hat{\zeta} e_{i}=\boldsymbol{e}_{i+1}$ with $\boldsymbol{e}_{4}=-\boldsymbol{e}_{0}$. If $\sigma=\Sigma_{i} k_{i} \zeta^{i} \in$ $\boldsymbol{Z}_{m}(\zeta)$, then $\hat{\boldsymbol{\sigma}}\left(\boldsymbol{e}_{0} e_{1} e_{2} e_{3}\right)=\left(\boldsymbol{e}_{0} e_{1} e_{2} e_{3}\right) K$ with $K=\Sigma_{i} k_{i}\left(R_{m}\right)^{i} \in \boldsymbol{Z}\left(R_{m}\right)$ and $\operatorname{det} \hat{\sigma}=\operatorname{det} K$. The commutable ring $\boldsymbol{Z}\left(R_{m}\right)$ is isomorphic to $\boldsymbol{Z}_{m}(\zeta)$ and $\boldsymbol{Z}(\hat{\zeta}) ; \hat{\zeta}$ and R_{m} are related by a similarity transformation with the 4×4 matrix $\left(e_{0} e_{1} e_{2} e_{3}\right)$.
L_{8} is divided into two sublattices $L_{8}^{(0)}$ and $L_{8}^{(1)}\left(=e_{0}+L_{8}^{(0)}\right)$ by the parity of the sum of the indices of the lattice vectors. $L_{8}^{(0)}$ is a face-centred type sublattice of L_{8} but belongs to a primitive octagonal Bravais class (Niizeki 1989b) because $L_{8}^{(0)}=\hat{\sigma} L_{8}$ with $\sigma=1+\zeta=2 \cos (\pi / 8) \exp (\mathrm{i} \pi / 8), \sigma^{\prime}=1-\zeta=2 \sin (\pi / 8) \exp (-3 \mathrm{i} \pi / 8)$ and $\operatorname{det} \hat{\sigma}=2$. Note that $\hat{\sigma} \boldsymbol{e}_{i}=\boldsymbol{e}_{i}+\boldsymbol{e}_{i+1}$. Incidentally, a body-centred sublattice of L_{8} belongs also to a primitive octagonal Bravais class because

$$
2(\hat{\sigma})^{-1} L_{8}=\left\{\sum_{i} n_{i} \boldsymbol{e}_{i} \mid n_{i} \in Z, n_{i} \equiv n_{j} \bmod 2\right\}
$$

on account of $2 / \sigma=1-\zeta+\zeta^{2}-\zeta^{3}$.
L_{10} is divided naturally into five sublattices $L_{10}^{(p)}, p=0-4$, where each sublattice is composed of the lattice vectors whose indices sum to p. The five sublattices are translated to each other; $L_{10}^{(p)}=p e_{0}+L_{10}^{(0)}, p=1-4 . L_{10}^{(0)}$ is another 4D decagonal Bravais lattice (Niizeki 1989b), which is written as $\hat{\sigma} L_{10}$ with $\sigma=\zeta^{2}-\zeta^{3}=2 \mathrm{i} \sin (\pi / 5), \sigma^{\prime}=\zeta^{4}-\zeta=$ $-2 \mathrm{i} \sin (2 \pi / 5)$ and det $\hat{\sigma}=5$. Basis vectors of $L_{10}^{(0)}$ are given by $\hat{\sigma} e_{i}\left(=e_{i+2}-e_{i+3}\right), i=0-4$, so that the axes of $L_{10}^{(0)}$ are rotated by $\pi / 2($ or $-\pi / 2)$ in $E_{\| \|}$(or E_{\perp}) from those of L_{10}. The relation between L_{10} and $L_{10}^{(0)}$ is similar to that between the 2D triangular lattice and one of its three sublattices into which it is divided.

2.2. $(2+1)$-reducible Bravais lattices in $5 D$

A primitive m-gonal Bravais lattice in 5D with $m=8,10$ or 12 is defined by the direct product of the 4D m-gonal lattice L_{m} and the 1D lattice $L_{1}=\{n c \mid n \in \boldsymbol{Z}\} ; L_{m, 1}=L_{m} \times L_{1}=$ $\left\{(l, n c) \mid \boldsymbol{l} \in L_{m}\right.$ and $\left.n \in \boldsymbol{Z}\right\}$. The point group of $L_{m, 1}$ is given by $D_{m h}=C_{m v} \times C_{s}=$ $D_{m}+I D_{m}$ with I being the 5 D inversion. Basis vectors ε_{i} of $L_{m, 1}$ are given by $\varepsilon_{i}=\left(\boldsymbol{e}_{i}, 0\right)$, $i=0,1, \ldots, k-1$, and $\varepsilon_{k}=(0, c)$ with $k=4$ for $m=8$ and 12 but $k=5$ for $m=10$. Accordingly, a lattice vector $l=\Sigma_{i} n_{i} \varepsilon_{i}$ is indexed as $\boldsymbol{l}=\left[n_{0} n_{1} \ldots n_{k}\right]$. Note that $L_{8,1}$ is an octagonal affine distortion of the SD simple hypercubic lattice, $L_{5, \text { hc }}$.

The centred octagonal lattice in 5D, $L_{8, \mathrm{c}}$, is given as one of the two face-centred sublattices of the primitive octagonal lattice $L_{8,1}$ and is represented with the basis vectors of $L_{8, \mathrm{c}}$ as

$$
\begin{equation*}
L_{8, \mathrm{c}}=\left\{\sum_{i=0}^{4} n_{i} \boldsymbol{\varepsilon}_{i} \mid n_{i} \in \boldsymbol{Z} \text { and } n_{0}+n_{1}+\ldots+n_{4}=\text { even }\right\} \tag{6}
\end{equation*}
$$

The point group of $L_{8, c}$ is $D_{8 h}$. The volume of the unit cell of $L_{8, c}$ is twice that of $L_{8,1}$. $L_{8, \mathrm{c}}$ is an alternating stacking of two 4D octagonal lattices $L_{8}^{(0)}$ and $L_{8}^{(1)}$. The relation between $L_{8,1}$ and $L_{8, \mathrm{c}}$ is similar to that between the primitive and the face-centred tetragonal lattices in 3D.

The pentagonal lattice L_{S} is a non-primitive ($2+1$)-reducible lattice, which is one of the five equivalent sublattices into which $L_{10,1}$ is divided. Its basis vectors $\tilde{\varepsilon}_{i}, i=0-4$, are related to those of $L_{10,1}$ by $\tilde{\varepsilon}_{i}=\varepsilon_{i}+\varepsilon_{5}=\left(\boldsymbol{e}_{i}, c\right)$. The point group of L_{5} is $D_{5 d}=$ $D_{5}+I D_{5} \subset D_{10 h}$. The remaining four sublattices are given by $p \varepsilon_{0}+L_{5}, p=1-4$.

If $a_{\|}=a_{\perp}=\sqrt{2} c$, we obtain $\tilde{\varepsilon}_{i} \cdot \tilde{\varepsilon}_{j}=5 c^{2} \delta_{i, j}$, so that L_{5} coincides in this case with $L_{5, \mathrm{hc}}$. Therefore, a general pentagonal lattice is a pentagonal affine distortion of $L_{5, \mathrm{hc}}$.
L_{5} is a periodic stacking along the c axis of $4 D$ decagonal lattices $L_{10}^{(p)}$, which are sublattices of L_{10}. If these five 4 D lattices are denoted by A, B, C, D and E, respectively, the one period of the stacking is given by $A B C D E$. Consequently, L_{5} degenerates into L_{10} if it is projected along the c axis. The relation between L_{5} and $L_{10,1}$ is very similar to that between the rhombohedral lattice and the hexagonal lattice in 3D.

There are no non-primitive dodecagonal lattices in 5D.

3. The reciprocal lattices

Let $L=\left\{\Sigma_{i} n_{i} e_{i} \mid n_{i} \in \boldsymbol{Z}\right\}$ be a d-dimensional Bravais lattice with point group G. Then, the reciprocal lattice L^{*} of L is the set of all the vectors g satisfying the condition, $\boldsymbol{g} \cdot \boldsymbol{l} \in Z \forall l \in L$. It follows that L^{*} is a Bravais lattice whose point group is G. A necessary and sufficient condition for e_{i}^{*} to be basis vectors of L^{*} is that the $d \times d$ matrix ($\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}^{*}$) is a unimodular matrix. \boldsymbol{e}_{i}^{*} are called dual basis vectors to \boldsymbol{e}_{i} if they satisfy the conditions $\boldsymbol{e}_{\mathrm{i}} \cdot \boldsymbol{e}_{j}^{*}=\delta_{i, j}$. The dual basis vectors are, however, not always convenient because they may not explicitly conform to the symmetry of L^{*}. In this paper, we shall use symmetry-adopted basis vectors. Note that volumes Ω and Ω^{*} of the unit cells of L and L^{*}, respectively, are related by $\Omega \Omega^{*}=1$.

A reciprocal lattice vector $g=\Sigma_{i} n_{i} e_{i}^{*} \in L^{*}$ is indexed with parentheses as $g=$ ($n_{0} n_{1} \ldots n_{k}$).

It follows from the general argument that the reciprocal lattices of the octagonal, decagonal, dodecagonal and pentagonal lattices in 4 D or 5 D are 4 D or 5 D lattices with the same point symmetries.

3.1. The case of $4 D$ lattices

The basis vectors e_{i}^{*} of the reciprocal 4D octagonal lattice L_{8}^{*} and the dodecagonal one L_{12}^{*} are given by similar equations to equations (1) but the lattice constants are replaced by $a_{\|}^{*}=1 /\left(2 a_{\|}\right)$and $a_{\perp}^{*}=1 /\left(2 a_{\perp}\right)$ for L_{8}^{*} and $a_{\|}^{*}=1 /\left(\sqrt{3} a_{\|}\right)$and $a_{\perp}^{*}=$ $-1 /\left(\sqrt{3} a_{\perp}\right)(<0)$ for L_{12}^{*}. The numerical factors in these relations of the lattice constants are consistent with the relation $\Omega_{m} \Omega_{m}^{*}=1$. e_{i}^{*} are dual to \boldsymbol{e}_{i} for the octagonal case.

It is well known that the axes of the reciprocal triangular lattice in 2D are rotated by $\pi / 2$ from those of the one in the real space. A similar relation exists between L_{10} and its reciprocal lattice $L_{10}^{*} ; L_{10}^{*}$ is given by $L_{10}^{(0)}$ (not by L_{10}) but with the lattice constants being replaced by $a_{\|}^{*}=2 /\left(5 a_{\|}\right)$and $a_{\perp}^{*}=2 /\left(5 a_{\perp}\right)$. That is, the basis vectors of L_{10}^{*} are given by $e_{i}^{*}=\left(a_{\|}^{*} \sigma \zeta^{i}, a_{\perp}^{*} \sigma^{\prime} \zeta^{2 i}\right)$ with $\sigma=\zeta^{2}-\zeta^{3}$.

The matrices $\left(\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}^{*}\right)$ for the decagonal and the dodecagonal cases are presented in appendix 1 .

3.2. The case of $5 D$ lattices

The reciprocal lattice of the primitive lattice $L_{m, 1}=L_{m} \times L_{1}$ is also a primitive m-gonal lattice because $L_{m, 1}^{*}=L_{m}^{*} \times L_{1}^{*}$, where $L_{1}^{*}=\left\{n c^{*} \mid n \in \boldsymbol{Z}\right\}$ with $c^{*}=1 / c$. The basis vectors of $L_{m, 1}^{*}$ are given by $\boldsymbol{\varepsilon}_{i}^{*}=\left(e_{i}^{*}, 0\right), i=0,1, \ldots, k-1$, and $\boldsymbol{\varepsilon}_{k}^{*}=\left(0, c^{*}\right)$.

The centred octagonal Bravais lattice $L_{8, \mathrm{c}}$ is a face-centred sublattice of $L_{8,1}$ so that its reciprocal lattice $L_{8, c}^{*}$ is the body-centred lattice $L_{8}^{*} \cup\left\{(11111) / 2+L_{8}^{*}\right\}$, i.e.

$$
\begin{equation*}
L_{8, \mathrm{c}}^{*}=\left\{\left.\frac{1}{2}\left(n_{0} n_{1} n_{2} n_{3} n_{4}\right) \right\rvert\, n_{i} \in \boldsymbol{Z} \text { and } n_{i} \equiv n_{j} \bmod 2\right\} \tag{7}
\end{equation*}
$$

where the index scheme for $L_{8,1}^{*}$ is used.
It is shown easily that $L_{8, c}^{*}$ can be indexed, alternatively, as a face-centred octagonal lattice if the basis vectors $\tilde{\boldsymbol{e}}_{i}^{*}=\left((\hat{\sigma})^{-1} e_{i}^{*}, 0\right), i=0-3$, and $\tilde{\boldsymbol{\varepsilon}}_{4}^{*}=(0, c / 2)$ are used, where $\sigma=1+\zeta$. This means that a body-centred octagonal lattice in 5D and the face-centred lattice belong to the same Bravais class but, however, $\tilde{\varepsilon}_{i}^{*}$ are rotated from ε_{i}^{*}. This is
similar to the fact that the face-centred tetragonal lattice in 3D can be indexed as a body-centred lattice if the basis vectors are changed. However, the index scheme with $\boldsymbol{\varepsilon}_{i}^{*}$ is superior to that with $\tilde{\boldsymbol{\varepsilon}}_{i}^{*}$ because $\boldsymbol{\varepsilon}_{i, \|}^{*}$ are parallel to $\boldsymbol{\varepsilon}_{i, \|}$.

The reciprocal lattice of L_{5} is also a pentagonal Bravais lattice L_{5}^{*} whose lattice constants are related to those of L_{5} by $a_{\|}^{*}=2 /\left(5 a_{\|}\right), a_{\perp}^{*}=2 /\left(5 a_{\perp}\right)$ and $c^{*}=1 /(5 c)$. The basis vectors of L_{5}^{*} are dual to those of L_{5}.

4. A general theory of the special points

A point group is called a centring group if the origin is its only fixed point. A group is a centring group if it includes I, the inversion operator. A point \boldsymbol{x} in E_{d} is called a special point of a lattice $L \subset E_{d}$ if its point group $G(x)$ with respect to the space group $\mathscr{G}=\{\{\rho \mid l\} \mid \rho \in \mathrm{G}$ and $\boldsymbol{l} \in L\}$ is a centring subgroup of G. Two special points are equivalent if they are transformed to each other by \mathscr{G}. A set of equivalent special points (mathematically, an orbit) form a class of special points. We can choose a representative x_{0} in a unit cell from each class. The number of special points of a class in the unit cell is given by $r=|\mathrm{G}| /\left|G\left(x_{0}\right)\right|$ where $|\cdot|$ stands for the order of the group. r is called the order of the class.

We assume hereafter that L is a Bravais lattice. Then, G includes I. A subgroup of G is classified into type-I or type-II according as it includes I or not, respectively, and, correspondingly, a special point of L is classified similarly. A necessary and sufficient condition for a point to be a type-I special point is that it is a lattice vector of the 'half lattice', $L^{(H)} \equiv\{\boldsymbol{l} / 2 \mid \boldsymbol{l} \in L\}$. Accordingly, the sum of the order over all the classes of type-I special points of L is equal to 2^{d}. The problem remaining for the type-I special points is to determine their point groups. The lattice points of L form one class of type-I special points with the full symmetry. This class is denoted by Γ following the convention in the band theory. We shall call a Bravais lattice a type-I lattice if it has no type-II special points but a type-II lattice, otherwise.
E_{d} is divided into fundamental domains which are translationally equivalent. A representative of the domains is the one, V, which includes the origin $0 \in L$. We assume that V (exactly, its closure) is a symmetrical convex polytope which is invariant against G. For example, the fundamental domain derived from the Voronoi partitioning with respect to L has this property. Then, all the special points in V except Γ at the origin are located on the centres of k-dimensional surfaces of V with $0 \leqslant k \leqslant d-1$. We take the symmetrical fundamental domains to be unit cells of L. The parallelotope formed by the basis vectors is not usually symmetrical.

The Voronoi cell at the origin of a simple hypercubic lattice $L_{d . \mathrm{hc}}$ is a hypercube. Therefore, its special point is indexed as $\left[h_{0} h_{1} \ldots h_{d-1}\right.$] in which h_{i} can take $0, \frac{1}{2}$ or $-\frac{1}{2}$. Consequently, all the special points are type I and $L_{d, \mathrm{hc}}$ is a type-I lattice. The simplest case is the 1D lattice $L_{1}=\{n c \mid n \in \boldsymbol{Z}\}$, which has two classes of special points with the full symmetry C_{s}; the representatives are 0 and $c / 2$.

Assume that L is an affine distortion of $L_{d, h c}$, whose point symmetry is higher than that of L. Then, all the special points of L are derived from those of $L_{d, \mathrm{hc}}$ and, consequently, L as well as $L_{d, h c}$ is a type-I lattice. However, two equivalent special points of $L_{d, \mathrm{hc}}$ are not necessarily equivalent as special points of L. Note that the parallelotope formed by the basis vectors of L is a symmetrical unit cell but is not a Voronoi cell.

Assume that L is a direct product of lower-dimensional lattices $L^{\prime} \subset E_{d^{\prime}}$ and $L^{\prime \prime} \subset E_{d^{\prime \prime}}$, $L=L^{\prime} \times L^{\prime \prime}\left(=\left\{\left(l^{\prime}, l^{\prime \prime}\right) \mid l^{\prime} \in L^{\prime}, l^{\prime \prime} \in L^{\prime \prime}\right\}\right.$ and that G is also a direct product, $\mathrm{G}=\mathrm{G}^{\prime} \times \mathrm{G}^{\prime \prime}$
with G^{\prime} and $\mathrm{G}^{\prime \prime}$ being the point groups of L^{\prime} and $L^{\prime \prime}$. Then, it can be shown easily that a necessary and sufficient condition for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in E_{D}=E_{d^{\prime}} \oplus E_{d^{\prime \prime}}$ to be a special point of L is that \boldsymbol{x}^{\prime} and $\boldsymbol{x}^{\prime \prime}$ are special points of L^{\prime} and $L^{\prime \prime}$, respectively. Then $\mathrm{G}(\boldsymbol{x})=$ $\mathrm{G}^{\prime}\left(\boldsymbol{x}^{\prime}\right) \times \mathrm{G}^{\prime \prime}\left(\boldsymbol{x}^{\prime \prime}\right) . L$ is a type-I lattice only if L^{\prime} and $L^{\prime \prime}$ are type-I lattices. Note that the fundamental domain of L is a direct product of those of L^{\prime} and $L^{\prime \prime} ; V=V^{\prime} \times V^{\prime \prime}=$ $\left\{\left(x^{\prime}, x^{\prime \prime}\right) \mid x^{\prime} \in V^{\prime}, x^{\prime \prime} \in V^{\prime \prime}\right\}$. The boundary of V is given by $\partial V=\partial V^{\prime} \times V^{\prime \prime}+V^{\prime} \times \partial V^{\prime \prime}$.

The simplest case of the above theorem is where $d^{\prime}=d-1$ and $d^{\prime \prime}=1$, i.e. $L^{\prime \prime}=L_{1}$. Then, $V^{\prime \prime}=V_{1}=[-c / 2, c / 2]$ and $V=V^{\prime} \times V_{1}$ is a hyperprism whose base hypersurface is V^{\prime}. A special point of L is given by $\boldsymbol{x}=\left(\boldsymbol{x}^{\prime}, 0\right)$ or $\left(\boldsymbol{x}^{\prime}, c / 2\right)$ with \boldsymbol{x}^{\prime} being a special point of L^{\prime}. In the former case, x (except the case $x=0$) is located on the boundary of $V^{\prime} \times\{0\}$, which is the horizontal cross section of V through the origin, and, in the latter case, \boldsymbol{x} is on the top hypersurface of V. The point group of a special point \boldsymbol{x} is given by $\mathrm{G}(\boldsymbol{x})=\mathrm{G}\left(\boldsymbol{x}^{\prime}\right) \times C_{s}$.

Assume that L is a sublattice of a type-I lattice \tilde{L} as is in the case of $L_{8, \mathrm{c}}$. Then, \mathscr{G} is a subgroup of the space group of \tilde{L}. Consequently, all the special points of L are simultaneously special points of \tilde{L}, so that the former are searched by examining the latter, which are known already. The point group of a special point of L is a subgroup of that of \tilde{L}. Moreover, two equivalent special points of \tilde{L} are not necessarily equivalent as special points of L.

Before closing this section, we add a remark. If \boldsymbol{x} is a type-II special point, $I \boldsymbol{x}$ is an equivalent special point to \boldsymbol{x} but is not translationally equivalent to \boldsymbol{x}.

5. The special points of the sd Bravais lattices

The special points of 4D lattices L_{m} with $m=8,10$ and 12 have been listed in I. Therefore, the special points of the primitive m-gonal lattices in 5D are easily enumerated because the 5D lattices are direct products of L_{m} and L_{1}. The results are listed in table 1 . The special point of the type $\boldsymbol{x}=\left(\boldsymbol{x}^{\prime}, 0\right)$, where \boldsymbol{x}^{\prime} is a special point of L_{m}, is represented by the same symbol as that used in I for x^{\prime} (note, however, that the symbol C^{\prime} in I is replaced by M in this paper). On the other hand, the special point of the type $\boldsymbol{x}=\left(\boldsymbol{x}^{\prime}, c / 2\right)$ is represented in most cases by the second alphabet to that of the symbol for ($\boldsymbol{x}^{\prime}, 0$). Since the present index scheme for L_{10} is different from that in I, the indices of the special points of $L_{10,1}$ are transformed appropriately from those presented in $\mathrm{I} \dagger$. In the case of $L_{8,1}$, different special points with a same number of zero indices are derived from a single class of special points of $L_{5, \mathrm{hc}}$.

The type-I special points of the centred octagonal lattice $L_{8, \mathrm{c}}$ are classified as in table 2. The representative of each class is indexed as $\frac{1}{2}\left[n_{0} n_{1} n_{2} n_{3} n_{4}\right]$ with $0 \leqslant n_{1} \leqslant 1$ and $\Sigma_{i} n_{i}=$ even. Since the unit cell of $L_{8, c}$ is twice that of $L_{8,1}$, two classes of special points of $L_{8, c}$ may become a single class of special points of $L_{8,1}$ given in table 1. A special point of $L_{8, \mathrm{c}}$ is denoted by the same symbol as that of $L_{8,1}$ if indices are common.

The remaining task for $L_{8, c}$ is to enumerate its type-II special points. There exist seven type-II centring subgroups of $D_{8 h}: D_{2}, D_{4}, D_{8}, S_{4}, S_{8}, D_{2 d}$ and $D_{4 d}$. None of them includes σ_{h}. Special points of $L_{8, c}$ are derived from those of $L_{8,1}$ and we can assume that a representative of a class of type-II special points takes the form: $\boldsymbol{x}=\frac{1}{2}\left[n_{0} n_{1} n_{2} n_{3} n_{4}\right]$ with $0 \leqslant n_{i} \leqslant 1$ and $\Sigma_{i} n_{i}=$ odd; if \boldsymbol{x} cannot be reduced to this form by a translation in $L_{8, \mathrm{c}},-\boldsymbol{x}(=I x)$ can be. If $n_{4}=0$, then, $\sigma_{h} \in \mathrm{G}(x)$. Therefore, X and

[^0]Table 1. Classifications of special points of the primitive octagonal (a), decagonal (b) and dodecagonal (c) lattices in sD. The first row shows a symbol assigned to each class of the special points. The second and the third rows show its point group and its order, respectively. The fourth row shows each class. A class in the last half of each table differs from the corresponding one in the firs

(a) Γ	X	C	M	R	O	Z	\boldsymbol{W}	D	N	S	P
$\begin{aligned} & D_{8 t} \\ & 1 \\ & \mathbf{0 0 0 0 0} \end{aligned}$	$D_{2 h}$ 4 $\frac{1}{2} 0000$	$\begin{aligned} & D_{2 h} \\ & 4 \\ & \frac{11}{22} 000 \end{aligned}$	$\begin{aligned} & D_{4 h} \\ & 2 \\ & 0_{\frac{1}{2} 0 \frac{1}{2} 0} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 4 \\ & 0 \frac{11}{2} 10 \end{aligned}$	$\begin{aligned} & D_{8 h} \\ & 1 \\ & \frac{1}{2} \frac{11}{2} \frac{1}{2} 0 \end{aligned}$	$\begin{aligned} & D_{x h} \\ & 1 \\ & 0000 \frac{1}{2} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 4 \\ & \frac{1}{2} 000 \frac{1}{2} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 4 \\ & \frac{11}{2} 000_{2}^{\frac{1}{2}} \end{aligned}$	$\begin{aligned} & D_{4} \\ & 2 \\ & 0_{2}^{1} 0 \frac{1}{2} \frac{1}{2} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 4 \\ & 0 \\ & 0 \frac{11}{2} \frac{1}{2} 2 \end{aligned}$	$\begin{aligned} & D_{\mathrm{kh}} \\ & 1 \\ & \frac{1}{2} \frac{11}{2} \frac{1}{2} \frac{1}{2} \end{aligned}$
$\begin{aligned} & \text { (b) } \\ & \Gamma \end{aligned}$	\boldsymbol{X}	C	M	\boldsymbol{P}	P^{\prime}	Z	W	D	N	Q	Q^{\prime}
$\begin{aligned} & D_{10 h} \\ & 1 \\ & 000000 \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 5 \\ & \frac{1}{2} 00000 \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 5 \\ & 0_{2}^{\frac{1}{2}} 0 \frac{1}{2} 00 \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 5 \\ & 00 \frac{1}{2} \frac{1}{2} 00 \end{aligned}$	$\begin{aligned} & D_{5 n} \\ & 2 \\ & 0 \frac{12}{5} \frac{2}{5} \frac{1}{5} 0 \end{aligned}$	$\begin{aligned} & D_{5 h} \\ & 2 \\ & 0_{5}^{2} \frac{1}{5} 1 \frac{\overline{2}}{5} 0 \end{aligned}$	$\begin{aligned} & D_{10 h} \\ & 1 \\ & 00000 \frac{1}{2} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 5 \\ & \frac{1}{2} 0000_{2}^{1} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 5 \\ & 0 \frac{1}{2} 00 \frac{1}{2} \frac{1}{2} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 5 \\ & 00 \frac{1}{2} \frac{1}{2} 0^{\frac{1}{2}} \end{aligned}$	$\begin{aligned} & D_{5 h} \\ & 2 \\ & 0 \frac{12}{12} \overline{2} 1 \end{aligned}$	$\begin{aligned} & D_{5 h} \\ & 2 \\ & 0_{5}^{2} \frac{11}{5} 5 \frac{1}{5} \frac{1}{2} \end{aligned}$
$\begin{aligned} & (c) \\ & \Gamma \end{aligned}$	X	C	M	T	T^{\prime}	Z	W	D	N	U	U^{\prime}
$\begin{aligned} & D_{12 h} \\ & 1 \\ & 00000 \end{aligned}$	$D_{2 h}$ 6 $\frac{1}{2} 0000$	$\begin{aligned} & D_{2 h} \\ & 6 \\ & \frac{11}{2} 000 \end{aligned}$	$\begin{aligned} & D_{4 n} \\ & 3 \\ & \frac{1}{2} 00 \frac{1}{2} 0 \end{aligned}$	$\begin{aligned} & D_{3 h} \\ & 4 \\ & \frac{1}{3} 0 \frac{1}{3} 00 \end{aligned}$	$\begin{aligned} & D_{3 h} \\ & 4 \\ & \frac{11}{3} \frac{1}{3} \frac{1}{3} 0 \end{aligned}$	$\begin{aligned} & D_{12 h} \\ & 1 \\ & 0000 \frac{1}{2} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & \mathbf{6} \\ & \frac{1}{2} 000 \frac{1}{2} \end{aligned}$	$\begin{aligned} & D_{2 h} \\ & 6 \\ & \frac{1}{2} \frac{1}{2} 00 \frac{1}{2} \end{aligned}$	$\begin{aligned} & D_{4 h} \\ & 3 \\ & \frac{1}{2} 00_{2}^{1!} \end{aligned}$	$\begin{aligned} & D_{3 n} \\ & 4 \\ & \frac{1}{3} 0 \frac{1}{3} 0^{\frac{1}{2}} \end{aligned}$	$D_{3 n}$ 4 $\frac{111111}{33332}$

Table 2. A classification of special points of the centred octagonal lattice in 5 D . The first four rows are similar to those in table 1 . The fifth row shows indices of a

[Z	C	M	C^{\prime}	O	W	S	N	P
D_{84}	$D_{8 h}$	$D_{2 h}$	$D_{2 h}$	$D_{2 h}$	D_{4}	$C_{2 h}$	C_{24}	$D_{2 d}$	$D_{4 d}$
1	${ }_{\text {gr }}$	4	4	4	2	8	8		
00000	00001	$\frac{11}{2} 1000$	$0{ }_{\frac{1}{2} 0 \frac{1}{2} 0}$	${ }_{2}^{1000} 10$	$\frac{11}{21} 12120$	$\frac{1}{2} 000 \frac{1}{2}$		$0_{2}^{10} 0{ }_{2} \frac{1}{2}$	2 ${ }^{1} 2121 \frac{1}{2}$
00000	0000 $\frac{1}{2}$	$\frac{1}{2} 0000$	${ }_{2}^{1001}{ }_{2}^{1} 0$	$\frac{1}{2} \frac{1}{2}$ 100	$\frac{1}{2} 0 \frac{1}{2} 00$	$\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$	441841	$\frac{1}{2} 00{ }_{\frac{1}{2}}^{4}$	${ }_{2}{ }^{1} 0_{2} 0_{4}$

R in table $1(a)$ cannot be special points of $L_{8, \mathrm{c}} . Z\left(=\frac{1}{2}[00001]\right)$ is also excluded because its point group is $C_{8 v}$.

There remain only three candidates for type-II special points of $L_{8, \mathrm{c}}$, namely, D, N and P in table $1(a)$. Of the three, D is excluded because its point group is $C_{2 v}$. The point group of N (or P) includes $S_{4}=C_{4} \sigma_{h}$ (or $S_{8}=C_{8} \sigma_{h}$), so that N (or P) is a type-II special point. The point groups of N and P are $D_{2 d}$ and $D_{4 d}$, respectively, as given in table 2.

The pentagonal lattice L_{5} is a type-I lattice and the point groups of the special points are determined as presented in table 3 . Note that C and M (or O and P) would be equivalent if L_{5} were $L_{s, \text { hc }}$. Table 3 has a mirror symmetry with respect to the interchange of indices, $0 \leftrightarrow \frac{1}{2}$, which follows from self-duality of L_{5}.

Table 3. A classification of special points of the pentagonal lattice in 5 D .

Γ	X	C	M	O	P	D	I
$D_{5 d}$	$C_{2 h}$	$D_{5 d}$					
1	5	5	5	5	5	5	
00000	$\frac{1}{2} 0000$	$0 \frac{1}{2} 00 \frac{1}{2}$	$00 \frac{1}{2} 0$	$\frac{11}{2} 00 \frac{1}{2}$	$\frac{1}{2} 0 \frac{1}{2} \frac{1}{2} 0$	$0 \frac{1}{2} \frac{1}{2} \frac{1}{2}$	$\frac{1}{2} \frac{11}{2} \frac{1}{2} \frac{1}{2}$

6. Transformation among the special points

An m-gonal QL in 2D has self-similarity characterized by a complex number τ_{m}, which is a unit of $\boldsymbol{Z}_{m}(\zeta)$; on the inflation the QL is scaled by $\left|\tau_{m}\right|$ and, subsequently, rotated by arg $\tau_{m} . \tau_{m}$ is given by $1+\zeta+\zeta^{-1}(=1+\sqrt{2}),-\zeta^{2}-\zeta^{-2}\left(=\frac{1}{2}(1+\sqrt{5})\right)$ and $1+\zeta$ for $m=8,10$ and 12 , respectively (Niizeki 1989a).

The affine transformation $\hat{\tau}_{m}$ is an automorphism of L_{m} and satisfies $\hat{\tau}_{m} C_{m v} \hat{\tau}_{m}^{-1}=C_{m v}$. Therefore, there exists a unimodular matrix K_{m} such that $\hat{\tau}_{m}\left(\boldsymbol{e}_{0} e_{1} e_{2} e_{3}\right)=\left(e_{0} e_{1} e_{2} e_{3}\right) K_{m}$. Then, the indices of a special point are transformed by K_{m} on the inflation procedure. It follows that (i) all the classes of the special points of L_{m} can be grouped into multiplets, (ii) different members of a single multiplet are permuted cyclically by the inflation and (iii) the point group is common among the members of the multiplet. Γ always forms a singlet. A class must form a singlet if there are no classes (other than Γ) with the same point symmetry as that of the class.

The above results are discussed in I. We consider here a similar question in the case of ($2+1$)-reducible Bravais lattices in SD. Since ($2+1$)-reducible QL associated with these 5D lattices are periodic along the c axis, the present automorphism α must be (4+1)-reducible; $\alpha=\hat{\sigma} \oplus(1)$, where $\hat{\sigma}(\sigma \in \boldsymbol{Z}(\zeta))$ is an automorphism of the 4D hyperlayers perpendicular to the c axis. A sD unimodular matrix K is associated with α. We can take $\sigma=\tau_{m}$ for the case of $L_{m, 1}$ because $L_{m, 1}=L_{m} \times L_{1}$. This choice also works well for $L_{8, \mathrm{c}}$, as proved in appendix 2.1. However, this choice is wrong for L_{5} and we have to choose $\sigma=-\left(\tau_{10}\right)^{2}$ as shown in appendix 2.2. This automorphism of L_{S} was found by Gähler (1986) in connection with self-similarity of a decagonal QL in 2D. Note that the unimodular matrix K associated with α can be treated in modulo 2 when the indices of a type-I special point x of L_{m} are transformed because $2 \boldsymbol{x} \equiv$ $0 \bmod L_{m}$.

Grouping the special points of $L_{m, 1}$ into multiplets is performed straightforwardly because the multiplets are derived from those of L_{m}; the latter multiplets are listed in I. It can be shown easily that $L_{8, c}$ has two doublets $\left\{C, C^{\prime}\right\}$ and $\{W, S\}$ but other classes are singlets. The presence of a doublet is due to the fact that the relevant unimodular matrix K satisfies $K^{2} \equiv E \bmod 2$ with E being the unit matrix. On the other hand, L_{5} has two triplets $\{X, P, O\}$ and $\{D, C, M\}$ but Γ and I are singlets. The triplets are allowed because $K^{3} \equiv E \bmod 2$.

7. Discussion

We have shown in section 3 that the reciprocal lattice of a ($2+1$)-reducible Bravais lattice in 5 D is also a $(2+1)$-reducible Bravais lattice with the same point symmetry. Therefore, the results of the preceding section apply equally to the classification of the special points in the reciprocal space of the $(2+1)$-reducible Bravais lattices. The only task remaining is to reindex the special points of the centred octagonal lattice as a body-centred lattice. The transformation matrix which transforms the indices from the face-centred lattice to the body-centred one is given by

$$
\frac{1}{2}\left(\begin{array}{rrrrr}
1 & 1 & -1 & 1 & 0 \\
-1 & 1 & 1 & -1 & 0 \\
1 & -1 & 1 & 1 & 0 \\
-1 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The indices as a body-centred lattice are listed in the fifth row of table 2.
A $(2+1)$-reducible QL derived from $L_{m, 1}$ takes the form $Q_{m, 1}=Q_{m} \times L_{1}$ with Q_{m} being a 2D QL derived from L_{m}. An m-gonal quasiperiodic tiling (QPT) in 2D is associated with Q_{m} and, accordingly, $Q_{m, 1}$ yields a 3D ($2+1$)-reducible QPT composed of prisms, each of which is given by $T \times S$ with T being a tile in the 2D QPT and $S=[n c,(n+1) c]$ being a segment of L_{1}. The vertices, the edge centres, the surface centres and the body centres of the prisms are special points of $Q_{m, 1}$. The base centre and the body centre of a symmetrical prism (e.g., the case of the octagonal prism of $Q_{8,1}$) formed of several basic prisms are also special points.

The centred octagonal $\mathrm{QL}, Q_{8, c}$, obtained from $L_{8, \mathrm{c}}$ is given, alternatively, as a sublattice of $Q_{8,1}$. It is an alternating stacking of two 2D octagonal QL derived from $L_{8}^{(0)}$ and $L_{8}^{(1)}$. The special points of $Q_{8, \mathrm{c}}$ are obtained from those of $Q_{8,1}$.

The pentagonal lattice L_{5} is an affine distortion of $L_{\mathrm{s}, \mathrm{hc}}$. Therefore, the pentagonal QL, Q_{5}, obtained from L_{5} yields naturally a 3D pentagonal QPT with parallelepipeds (Lück 1987). The vertices, the edge centres, the face centres and the body centres of the parallelepipeds are special points of Q_{5}. More precisely, the special points of type O and P are located on the body centres of the two kinds of parallelepipeds of the QPT; O (or P) becomes an oblate (or prolate) rhombohedron when $a_{\|}=2 c$. A parallelepiped of type P (or O) has four (or two) faces of type C and two (or four) faces of type M. Four (or ten) parallelepipeds may form a dodecahedron (or an icosahedron), which is an affine distortion of a rhombic dodecahedron (or icosahedron) in the primitive icosahedral QL in 3D. The centre of the dodecahedron (or icosahedron) is a special point of type D (or I). These polyhedra (as well as the two parallelepipeds) are so-called zonohedra, which are projections of a 5D hypercube and a 4D hypercube which is one of the hypersurfaces of the former (Coxeter 1973).

Acknowledgments

The work is supported by a grant-in-aid for Science Research from the Japanese Ministry of Education, Science and Culture.

Appendix 1

The matrices ($\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{i}^{*}$) are given by the left-hand matrix below for the decagonal case and by the right-hand matrix below for the dodecagonal case:

$$
\left(\begin{array}{rrrrr}
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Appendix 2

2.1.

The 5D unimodular matrix associated with $\alpha=\hat{\sigma} \oplus(1)$ is $K=K_{8} \oplus(1)$, which is given by the left-hand matrix below:

$$
\left(\begin{array}{rrrrr}
1 & 1 & 0 & -1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
-1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{rrrrr}
-1 & 0 & 1 & 1 & 0 \\
0 & -1 & 0 & 1 & 1 \\
1 & 0 & -1 & 0 & 1 \\
1 & 1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & -1
\end{array}\right) .
$$

The parity of the sum of the indices of $\boldsymbol{I} \in L_{8,1}$ is not changed by $K=\left(k_{i j}\right)$ because $\Sigma_{i} k_{i j} \equiv 1 \bmod 2$. Therefore, α is an automorphism of $L_{8, \mathrm{c}}$.

2.2.

$\hat{\tau}_{10}$ transforms $L_{10}^{(p)}$ into $L_{10}^{(q)}$ with $q \equiv-2 p \bmod 5$ (Niizeki 1989b). Therefore, it changes the stacking $A B C D E$ of L_{5} into $A D B E C$, which cannot be transformed to $A B C D E$ by a rotation around the c axis. Thus, $\alpha=\hat{\tau}_{10} \oplus(1)$ is not an automorphism of L_{5}. On the other hand, $\left(-\hat{\tau}_{10}^{2}\right) L_{10}^{(p)}=L_{10}^{(p)}$ because $-(-2)^{2} \equiv 1 \bmod 5$. It follows that $\alpha=\left(-\hat{\tau}_{10}^{2}\right) \oplus$ (1) is an automorphism of L_{5}. The 5D unimodular matrix K associated with α is given by the right-hand matrix above.

References

Gähler F 1990 Quasicrystals and Incommensurate Structures in Condensed Matter ed M J Yacamán, D Romeu, V Castaño and A Gómez (Singapore: World Scientific) pp 69-78
Henley C L 1987 Commun. Condens. Matt. Phys. 13 59-103
Janssen T 1988 Phys. Rep. 168 55-113
Lück R 1987 Mat. Sci. Forum 22-24 231-46
Niizeki K 1989a J. Phys. A: Math. Gen. 22 193-204

- 1989b J. Phys. A: Math. Gen. 22 205-18
-_ 1989c J. Phys. A: Math. Gen. 22 4281-93
1989d J. Phys. A: Math. Gen. 22 4295-302
Niizeki K and Akamatsu T 1990 J. Phys. Condens. Matter 2759-71

[^0]: \dagger The bars on some indices of special point P^{\prime} were missed in 1 .

